Kuiper Belt Objects…What Are They?

Kuiper Belt Objects are unique in that they have different compositions than most asteroids and different orbits than most comets. This has led astronomers to contemplate the identity of Kuiper Belt Objects. Surprisingly, the answer isn’t so clear. Asteroids are mostly composed of rock while comets are mostly composed of rock and ice. Most Kuiper Belt Objects are composed of half rock and half ice, so in this respect, they might be considered comets. Nevertheless, it is believed that some comets can actually turn into asteroids as they lose their ice from passing close to the Sun. It is also worth noting that comets that come close to the Sun have elliptical orbits while most Kuiper Belt Objects have circular orbits that don’t come close to the Sun at all. This is why many have concluded that Kuiper Belt Objects are simply an icy asteroid belt. However, then we enter the issue of whether the larger Kuiper Belt Objects should be classified as dwarf planets. Our knowledge of the universe has expanded rapidly in just a few decades, and we have realized that our universe and all the objects and worlds within it are more complex than we initially believed. Maybe it’s time to update our classification system or accept that many, if not most, objects in our universe fall somewhere in between the categories we have created.


Kuiper Belt



Kuiper Belt Objects

Comets, Meteors, and Asteroids

Exploring Our Twin Planet

Venus is often called Earth’s twin, which seems like a very strange thing to say considering Earth is bountiful with life while Venus is uninhabitable to virtually all organisms we have on Earth. However, new research has led scientists to believe Venus’s surface is more dynamic than previously thought. The planets of terrestrial worlds such as the Moon and Mars are static, but this isn’t the case with Earth and Venus. Venus is a world covered in lava and ancient volcanoes. It is compared to Earth due to their similar sizes and thick atmospheres, and while Venus doesn’t feature plate tectonics that we have on Earth, we have found evidence of geological activity on Venus. Based on discoveries of lava filled blocks, scientists speculate that Venus’s crust could heat up enough for blocks of land to rotate and move around. Given the fact that it was thought that no geological activity had occurred on Venus for millions of years, this is an extraordinary theory. Similar to plate tectonics on Earth, large chunks of rock move around Venus’s surface. However, unlike on Venus, on Earth new crust is created and old crust sinks into the planet. It’s still to early to know what exactly is causing the geological activity on Venus, but I’m hopeful further study of Venus will make us increasingly certain that we truly do have a (fraternal) twin planet beside us!


Venus Surface





A Greedy, Gluttonous Galaxy

It’s no secret that the universe is growing. However, research leads us to believe that our own Milky Way Galaxy is growing as well. In fact, our galaxy exhibits cannibalistic behavior, absorbing material from the dwarf galaxies surrounding it. We know that the chemical makeup in the central bulge of our galaxy differs from the chemical makeup of the outer halo of our galaxy, and we have also found that the chemical makeup of the outer halo of our galaxy is similar to the chemical makeup of stars found in dwarf galaxies orbiting our galaxy – namely, the Large Magellanic Cloud and the Sagittarius Dwarf Elliptical Galaxy. Therefore, these dwarf galaxies may simply be the leftovers of galaxies that were long ago absorbed into our own galaxy.


Milky Way Galaxy

Astronomers believe the key to understanding the growth of our galaxy is learning more about the dark matter around our galaxy. The halo of dark matter surrounding our galaxy actually exerts a gravitational force on smaller, neighboring galaxies, so it may be that dark matter is ripping away stars and pulling them into the external regions of our galaxy. There are still so many unanswered questions about dark matter and dark energy, but a project called the Dark Energy Survey is currently underway, in which we are using a tool called the Dark Energy Camera to detect stellar streams. Stellar streams are groups of relatively few stars that have been ripped away. They are difficult to detect because we are looking for a small number of stars in such a large region of space. Nevertheless, these stellar streams illustrate how our galaxy is constructed from smaller galaxies, so the future findings of the Dark Energy Survey should prove exciting!





European-Extremely Large Telescope

The European Southern Observatory began construction of the European-Extremely Large Telescope (E-ELT) back in 2014. This telescope is on track to be the world’s largest optical and infrared telescope by the time it is completed in 2024, thus living up to its name. The E-ELT will include a main mirror that is 128 feet in diameter, beating out some of its competitors, such as the Giant Magellan Telescope and the Thirty Meter Telescope, which boast main mirrors that are 82 feet and 98 feet in diameter respectively. This telescope will be able to capture images 16 times sharper than images captured by the Hubble Space Telescope.

The E-ELT will be used to study exoplanets, dark matter, supermassive black holes, galaxy formation in the early universe, and much more. Observations from this telescope may be able to answer questions such as if the laws of nature really are universal, and we may be able to learn more about stellar populations at distances of tens of millions of light-years away from us. The E-ELT will be operating in northern Chile’s Atacama Desert, an ideal location for astronomical observation due to the dryness of the air and the clarity of the night sky. However, Chile, like most other locations in the world, still suffers from light pollution, so efforts to limit blue light emissions and luminous signs have come about.

Astronomers hope the E-ELT will be in use for at least 30 years. At a price of $1.4 billion, I would sure hope so. The more technology advances, the more we will be able to learn about our universe. The farther distances we will be able to look out to, and the more we will be able to essentially look back in time. I’m excited for the astronomical discoveries bound to emerge. However, given the fact that we have just over six and a half years left until the E-ELT’s first light, we’ll just have to be patient for now!